若手研究者産学連携
プラットフォーム
研究シーズ一覧
カテゴリ・エリアから探す
石油や天然ガスなどの化石資源は自動車や航空機の燃料、衣類や化成品の原料などとして利用され、人類の経済活動の発展を支えてきた。しかし、その埋蔵量には限りがあり、枯渇が危惧されている。また、化石資源を消費することで副次的に生産されるものの中には、環境問題を引き起こす物質も多く確認されている。例えば、二酸化炭素は地球温暖化の要因として取り上げられ、また窒素酸化物や硫黄酸化物は、酸性雨・大気汚染などの公害問題の原因物質として問題となっている。これらの理由から、近年では化石資源の節制・保存を目的としてバイオマス資源への代替が注目されている。そこで本研究では、バイオマスの主成分であるリグノセルロースの化学変換により有用化成品を製造するための合成技術の確立を目指す。
詳細を見る
水素燃料は、次世代の社会基盤を形成するエネルギー媒体として注目されています。またファインケミカル産業は、新たな付加価値や機能性を有する素材の生産事業として期待が高まっています。第二次産業は食品加工技術だけでなく、農産物をファインケミカル産業に供給可能な原材料に加工する技術を開発する必要があります。医薬品や生理活性物質のようなファインケミカルあるいはその原料を微生物により生産する技術を開発することは、第一次産業である農業を基盤とした新たな市場形成、新規雇用開発、サーキュラーバイオエコノミーの形成に寄与する可能性があります。
本研究課題では、農産物などから水素燃料とファインケミカル原料を同時に生産する技術(乳酸駆動型嫌気発酵)を開発し、これを社会実装規模で実証します。
詳細を見る
これまで有機化学研究の多くは中性分子に注がれてきた。その一方、取り扱いの難しさからイオン性分子の活用は遅れてきた。本研究では第4級アンモニウム塩にスポットライトを当て、触媒化学のエッセンスを取り込み、次世代機能性アンモニウム塩の創出に向けて、研究を行う。
すでに我々の分子の機能調査を始めており、今までにない生物活性などが見つかっている。しかし、アンモニウム塩の応用先は生物応用にとどまらない。イオン性を活かした新たな素材としての活用も期待される。
本研究の特色は、アンモニウム塩の合成研究という基礎研究に立脚した内容でありながら、多種多様な構造を有するアンモニウム塩を提供し、望む機能を発現すべく、分子合成を達成する点にある。特に合成手法開発が強みであり、シード分子が見つかった際には最速で構造活性相関など次のステージの研究に展開できる。ヒットした後にこそ真価を発揮する分子ライブラリーを提供し、研究を行える点が強みである。
詳細を見る
マイクロトランスファープリンティングによる微細かつ高精度の薄膜転写技術を開発し、加工が困難な磁気光学結晶などの異種材料をシリコンフォトニクスプラットフォーム上に集積します。シリコーン高分子エラストマーというフィルムを用いて薄膜化した材料や素子をピックアップし、シリコン光回路の任意の位置に数マイクロメートル以下の高精度で貼り付けることができます。これにより、これまで実現できなかった新機能の光素子の作製や、それらを一体集積した機能集積光回路が実現可能になります。本研究では、これまで高密度集積が困難とされてきた導波路型光アイソレータの作製を目指します。
詳細を見る
温度測定は工業技術の基礎ですが、ナノメートルからマイクロメートルという大きさでの温度測定には、現在も有用な手法が存在していません。電気抵抗や熱起電力から温度測定を行う一般的な接触式電子温度計では、素子の大きさが最小でも数十マイクロメートルに限られます。サーモグラフィーを用いれば非接触で温度計測ができますが、使用される赤外線波長が10マイクロメートル程度であるため、これより小さいスケールの温度計測を行うことは困難です。一方で、近年の半導体集積回路の超微細化やグラフェンなどの新規ナノ電子材料技術の発展により、微小領域でのジュール熱やペルチエ効果などを正確に測定することが必要となっています。また、バイオ分野などでもマイクロ流体チップ高速PCRの微細化やナノ加工食品の熱分析といった用途で温度計測のニーズが生じています。
私は、企業の研究者が量子センサ技術によるナノスケールの温度計測・熱分析技術を自身のラボで利用できるような試験機を開発して、半導体製造工程の温度管理や化粧品ナノ材料の熱分析技術につなげようと研究しています。
詳細を見る
電子の持つ電気的性質(電荷)と磁気的性質(スピン)を同時に利用するスピントロニクスにより、超低消費電力での演算や記憶を可能とする半導体集積回路、量子コンピュータに迫る計算性能を室温で簡易的に実現できる確率論的コンピュータ、Wi-Fi電波からの発電によるバッテリーレスのエッジ端末などの実現が期待されます。このような低炭素社会の実現に資する革新的技術の実現に向けた基礎から応用までの研究開発を幅広く展開しています。本研究開発課題ではA)DRAMを代替する大容量(100Gbit超)STT-MRAM、B)SRAMを代替する超高速(1GHz超)SOT-MRAM、C)多体最適化問題を室温にて効率的に処理する疑似量子計算機、D)Wi-Fi電波からの環境発電、を実現する革新的スピントロニクス素子を開発します。これまで私たちが開発してきた世界をリードする技術を事業化に向け発展させ、現行技術が抱える半導体ワーキングメモリ大容量化の限界、半導体回路の発熱の問題、計算論的複雑性の高い問題の効率処理の問題などへの解決策を示します。
詳細を見る
電気化学反応は電極と電解質の境界である「界面」で進行します。したがって、電気化学反応の特性を改善する場合には、この「界面」に着目した材料検討が最も有効だと考えられます。しかし、この「界面」は2つの異なる材料の境界の数ナノメートルの領域のことであり、その観察は困難を極めます。特に、電気化学反応が進行している状況で、「界面」を観察するのは至難の業でした。これまでにさまざまな方法で「界面」のリアルタイム観察が試みられ、多くの素晴らしい成果が得られていますが、どの方法も簡単に試せる手軽さに欠けていました。私たちは、この「界面」のリアルタイム観察のハードルを大きく下げ、材料のルーティーン試験の一つに組み込んでいただけるような手法の開発を試みています。
詳細を見る
カーボンニュートラル社会の実現に向けて、大きな面積を占めるオフィスビルの省エネルギー促進は極めて重要な課題です。特に、中小規模のオフィスでは対策が少なく、省エネルギー促進のブルーオーシャンといえます。そのため、オフィスビルを対象として、マイコン端末と画像診断を用いた簡易測定キットによる省エネ自動診断と在室者への省エネ行動の働きかけを実現するツールを開発し、中小規模のオフィスに普及させることが我々の目的です。
AI技術の発展により、カメラによる画像解析が簡単かつ高速に実現可能になりました。プライバシーに配慮しながら、画像診断によってオフィスの状態を検知し、適切な省エネ施策を自動診断するシステムを構築します。マイコンを用いた環境計測も近年発展した技術です。これにより安価に環境計測システムを構築できるようになりました。オフィス環境の計測は省エネルギーのみならず、健康性や知的生産性の評価にも活用できます。さらに、建物ユーザーのスマートフォンに導入できるアプリを提供することによって、省エネ行動へのポジティブ・フィードバックといったナッジを通じて、建物利用者が誰でも省エネの取組みに参加できる環境を作り、建物と利用者の両面から省エネルギーを促す仕組みを構築します。
詳細を見る
近年のIoTの社会的実装の加速に伴い、我々の生活環境にスマートフォンなどを代表とする高性能なセンサシステムが浸透している。次の社会的・技術的の目標の一つとしては、日常の消耗品(食品や衣類など)や農耕地などの広大なフィールドから低コスト・低環境負荷のセンサにより情報を取得してIoTの対象を拡大し、人々に安全な生活と健康を届けることが挙げられる。
本研究提案は、 (a) センサの全ての構成要素が自然分解性・生分解性で、利用後は使用環境で完全に消失し、(b) 電磁波を利用しワイヤレスでのセンサ情報取得を可能(配線不要)、(c) バッテリーフリーで安全・安心の素材のみで構成(環境や生体への有害物質を含まない)、(d) 安価で大量生産可能、の5つの要素を全て満たす新規な自然分解性センサおよび計測通信手法を提案する。提案する手法により、使用環境にあわせたワイヤレスセンシング可能な自然分解型のセンサを開発し、(1)農業用地のIoTソイル(自然分解する微小顆粒状ワイヤレスセンサ)(2)生鮮食品などの品質管理シール(生分解する薄膜状ワイヤレスセンサ)の2つの実用的なかつ新規なセンサシステムを実現する。
詳細を見る
近年、IoT/DXによる未来型社会の実現に向けた取り組みが社会で活発化している。一方、IoT/DXの進展は、ネットワーク構築やセンサシステムの導入等の「イニシャルコスト」を低減させることが重要な課題になっている。本研究で開発するRFID帯の通信を用いた無線ストレッチャブルセンサは、非常に薄く柔軟,、低コスト(将来的には一枚当たり10円以下)、バッテリーフリーのシステムを実現する。
また、インフラ構造物の寿命は50年以上である一方、従来のエレクトロニクスの寿命は50年に満たないことから、既存のエレクトロニクスは寿命の観点でインフラ構造物への適用が困難である。そこで本研究では、環境耐性が非常に高く長寿命のカーボン系材料を用いたセンサシステムを実現することによって、従来のエレクトロニクスの弱点である長期信頼性の課題を克服することを目指す。
これらによって、規模インフラ構造物の多点計測、センサシステムを鉄筋コンクリート内部に埋め込むことによる内部の劣化状況の定量評価等といった従来技術ではコストの問題で実現しなかった技術課題の解消を目指す。
詳細を見る