若手研究者産学連携
プラットフォーム
研究シーズ一覧
シーズを検索
AIによるレーザー加熱の最適制御技術を活用した、セラミックス複合材料(CMC)の超高温高速熱疲労試験法の確立 【用途例】超高温環境の実現、AI×レーザー制御による高度な温度分布制御により、加速試験やレーザー加工を高度化
本研究は、水蒸気雰囲気下におけるレーザー照射のAI制御により、セラミックス複合材料(CMC)の耐熱温度として期待される1400℃以上の超高温で、かつその温度分布を高度に制御することができる、加熱試験方法・システムの確立を目指します。
本研究を担当する研究者は、既にSiCのセラミックスを1500℃まで30秒程度で加熱する「選択的レーザー温度制御法」を確立しています。今後は、この技術を活用して、任意の温度分布を形成するレーザー照射条件を提案するAIの開発を進めます。
詳細を見る
光通信機器等への活用を想定した、安価に高速光振幅・位相波形測定を可能とする光計測デバイスの開発 【用途例】近年注目を集める光通信への応用
光通信の分野で、計測システムのコスト面は大きな課題となっています。その原因は、光信号や光波形の計測や解析には、非常に高速なデジタル信号処理が必須となり、価格的にネックとなっていたためです。
本技術により「低速信号処理のみ」で高速信号処理依存の光計測機器 に匹敵する性能を得ることを狙います。計測機器としてのコストに直すと、数分の1〜数 10 分の1程度となることが期待されます。
詳細を見る
レーザー加工機の製造コスト低減を見据えた、磁気による2次元光制御を適用したハイパワーレーザーの開発 【用途例】量産に向いた加工用ハイパワーレーザー
レーザー加工とは、ハイパワーで照射したレーザーの照射面を制御し熱エネルギーによって加工する手法です。
本研究では、磁気光学効果という、磁場をかけた物質の透過光や反射光の偏光状態が変化する現象を活用し、レーザーを制御します。この制御手法は、原理的に、集積化が可能な唯一のQスイッチ(発振を制御し高出力パルスを得る手法)素子であると考えられており、ハイパワーレーザーの小型化や量産化による製造コスト低減が期待されています。
また、磁気光学を使ったQスイッチレーザーの開発には、本研究の研究者グループが世界で初めて実現し、関連特許も取得しています。
詳細を見る
粘性熱電材料の特長を生かした、従来より冷却効果が高くフレキシブルな全面冷却シートの開発 【用途例】軽量かつフレキシブルな全面冷却シートの開発により、熱中症予防や、新たなエンターテイメント実現等に貢献
本研究は、独自の粘性熱電材料を活用して、従来のペルチェ素子(冷却装置等に使われる熱電素子)を利用した製品と同量の熱電材料で、50~100倍の大面積に密着して冷却可能な、「全面冷却シート」の実用化を目指します。
本研究を担当する研究者は、Roll to Rollの大量生産を想定した、独自の粘性熱電材料を開発し、極薄でも温度差を維持できることを実証しました。この粘性熱電材料を活用して、全面冷却シートの実用化に向けた材料、デバイス、プロセスに関する研究開発を一気通貫で進めます。
詳細を見る
鍵管理の必要ない低コスト高セキュリティ認証システムの開発 【用途例】認証システムのサーバークラウド化により、シングルサインオン認証を実現
情報の復号化をサーバーで行う必要のない高セキュリティ認証システムを開発します。本研究での認証システムは以下の通りです。
①利用者からの認証情報をワンタイムキーで暗号化し、サーバーへ送信します。
②サーバーでは送られてきた暗号文と登録済みデータを復号化せずに照合します。照合結果は暗号化されたまま照合機へ送られます。したがってサーバーで鍵管理を行う必要はなくなります。
③照合機で照合用の鍵が生成され照合結果のみ参照することができます。
この認証方式を活用することで、セキュリティレベルが高く、アカウント管理の必要ない低コストな認証システムが可能となります。
詳細を見る
低エネルギー損失かつ高出力密度の高性能モーターを実現する、 純鉄粉末の組織制御技術の開発 【用途例】より小型・省エネ・高出力なモータ
「産業のコメ」とも呼ばれるモータは、家電、ロボット、自動車、発電機と、あらゆる産業に不可欠な存在となっています。
本研究テーマは、モータ特性に大きな影響を与える主要部品である鉄心の性能向上を目指します。具体的なアプローチとして、鉄心の材料となる「純鉄粉末」の磁気特性に着目し、鉄心の性能向上のために最適化された加工プロセスと熱処理の手法を研究します。
詳細を見る
CO2を固定化する炭酸カルシウム板状粒子で強化される、貝殻真珠層を模倣した軽量構造材料の開発 【用途例】軽量で高い剛性を要求する製品への適用、および無機素材、密閉性の高い素材としての活用
本研究では、CO2を原料とする板状炭酸カルシウム粒子が高密度に配向している軽量構造材料を開発します。
複合材料の製造方法は、研究者により確立されており、板状炭酸カルシウム粒子と樹脂繊維を混合した溶液を抄造(濾過)・乾燥させ、熱プレスさせることで高充填・高配向な構造材料が完成します。
今後は原料である炭酸カルシウムを板状にするため、アスペクト比を制御する研究に重点を置き、実用化に向けて効率的に原料を作製できる仕組みを形成します。
詳細を見る
バイオマス関連テクノロジーを革新する有用微生物の濃縮技術の開発 【用途例】様々な細菌の力を活用した社会課題の解決
生体模倣型の基板上に光の照射等で有用微生物を生きたまま・高密度・大面積で集積する独自技術「外場誘導濃縮」を駆使し(米Science姉妹誌に予備的成果が掲載(2020))、高速起動型環境浄化バイオ燃料電池の基盤構築および新規な物質変換技術の開拓を行います。
詳細を見る
遺伝子改変技術を活用した、デンプンの代わりに機能性多糖類を蓄積する高付加価値オオムギの開発 【用途例】目的に合わせた高付加価値なオオムギを開発することが可能に
本研究は、デンプンの代わりに機能性多糖類を穀粒に蓄積する、高付加価値なオオムギの開発を目指します。これは、人間の健康機能性食品としてだけでなく、家畜の健康を支える機能性飼料としての利用も期待されます。
本研究を担当する研究者は、独自に開発したスクリーニングシステムにより、デンプンの蓄積が少ないオオムギの変異体を獲得しています。本研究では、そのオオムギ変異体と機能性多糖類を過剰発現する遺伝子改変オオムギを交雑することで、高付加価値オオムギを開発します。一方、デンプンが少なく遺伝子改変が可能なオオムギを育成することにより、様々な機能性多糖類を蓄積する遺伝子改変オオムギの開発システムを構築します。
詳細を見る
超広域材料選択性を持つ光パターニング装置の開発 【用途例】インクジェットに頼らない、どんなナノ材料でもマイクロ印刷できるレーザー技術
微粒子が分散した溶液へのレーザー照射によって、粒子が集積固化/連続配線化する現象を発見しました。この現象を用いると、感光性がない材料でもレーザー微細造形が可能になります。本研究では、この技術を実用化できるレベルまで高速化します。具体的にはグリーンレーザーを用いた並列照射でレーザー描画速度の大幅向上を狙います。
詳細を見る
窒素・ホウ素コドープ技術を用いた、低コストかつ安定な低抵抗4H-SiC単結晶成長技術 【用途例】低抵抗SiCウェハの量産化によって、SiCパワーデバイスの迅速な高性能化を実現します
低抵抗な4H-SiCバルク単結晶成長を実現する窒素・ホウ素コドープ(共添加)成長の技術開発を行います。既に、窒素・ホウ素コドープ成長では窒素単独ドープSiC成長で生じる積層欠陥発生を抑える効果が確認されていますが、初期のホウ素ドープの不安定性に伴う貫通転位発生などの欠陥抑制が新たな課題であると考えています。本研究では、成長初期界面の歪みを緩和する技術を開発することで、欠陥抑制を試みます。低抵抗種結晶を用いた際の結晶成長の欠陥発生の有無や歪みの程度を、通常の種結晶を用いた場合と比較検討することを通じて、欠陥発生の少ない窒素・ホウ素コドープ低抵抗SiC成長技術開発を行います。
詳細を見る
メンテフリー&ワイヤレスなIoTセンサの実現を目指して。 振動発電デバイス向け磁性材料と厚膜形成技術を開発 【用途例】昼夜問わず発電可能な自立型電源デバイス
現場のリアルデータを記録するIoTセンサは、Society 5.0時代におけるキープロダクトです。その実装シーンは、製造工場、防犯設備、インフラ管理、防災現場、漁業、etc…私たちの生活のあらゆる場面に広がります。
本研究では、IoTセンサのワイヤレス化で課題であった給電問題を解決すべく、自立型電源となる発電デバイスに適用可能な「振動発電」(振動を電気エネルギーに変換する仕組み)に着目した研究開発を行います。特に、耐久性、耐熱性の点から磁歪効果を利用した振動発電に着目し、高出力化のための磁性材料を開発し、製造容易性とコスト低減を考慮した材料形成技術を確立することに主眼を置いています。
詳細を見る
植物バイオマスから環境調和型プロセスでつくるリグニン素材 【用途例】バイオマス由来の特性を生かしたマイクロカプセルの活用
植物バイオマスの利活用にあたっての難関はリグニンの除去です。バイオマス変換においてリグニンは、分解、縮合、化学修飾、変性を受けるため、高品質素材原料として、リグニンを活用することが困難でした。そこで本研究では、リグニンと多糖を低変性高分子として効果的に成分分離するリグノセルロース変換法を開発し、低コスト、環境低負荷のリグニン取得プロセスを構築します。さらに、リグニンおよびリグノセルロース高分子を起点に、高付加価値素材原料を開発します。
詳細を見る
装着感がなく、かつ、生活環境下で連続計測が可能な爪装着型ウェアラブルデバイスの実証実験及び製品化 【用途例】生活環境下での常時計測が可能であるため、日常の体調管理及び見守りツールとして活用可能
従来のウェアラブルデバイスとして、胸部に装着するタイプやリストバンドタイプが製品化されていますが、発汗や装着感の問題から、入浴時や睡眠中を含む24時間の連続モニタリングに使用することは困難です。また、装着感があることから、生活環境下のありのままの計測になっていないおそれもあります。本研究にて製品化を目指す「爪装着型ウェアラブルデバイス」は、付け爪を応用したデバイスです。爪には、汗腺も感覚神経もないことから、従来デバイスの問題点であった発汗と装着感が解決され、生活環境下のありのままの計測が可能となります。
詳細を見る
フレキシブルμLEDディスプレイ製造においてμLEDと基板の接合を必要としない革新的集積工程を開発 【用途例】次世代ディスプレイが普及した世界
一辺10-100μm以下のμLEDチップを透明樹脂基板に埋め込み、μLEDと基板の接合工程を経ずにμLEDを駆動できる新構造のフレキシブルμLEDディスプレイの製造工程を構築します。大口径のSiウエハで試作を行い、
①多数のチップを高精度で移載するためのマストランスファー
②チップを樹脂に埋め込むためのウエハレベル圧縮成型
この2つの主要基盤技術の確立を目指します。①では1万個以上のμLEDを±1μm以内の精度での一括実装、②では3色のμLEDチップ群(2×2のアレイ)のピッチを80ppi程度のピクセル密度で実装、をそれぞれ実現します。
詳細を見る